Curves of genus two over fields of even characteristic
نویسندگان
چکیده
In this paper we classify curves of genus two over a perfect field k of characteristic two. We find rational models of curves with a given arithmetic structure for the ramification divisor and we give necessary and sufficient conditions for two models of the same type to be k-isomorphic. As a consequence, we obtain an explicit formula for the number of k-isomorphism classes of curves of genus two over a finite field. Moreover, we prove that the field of moduli of any curve coincides with its field of definition, by exhibiting rational models of curves with any prescribed value of their Igusa invariants. Finally, we use cohomological methods to find, for each rational model, an explicit description of its twists. In this way, we obtain a parameterization of all k-isomorphism classes of curves of genus two in terms of geometric and arithmetic invariants.
منابع مشابه
Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields via Explicit Formulae
We extend the explicit formulae for arithmetic on genus two curves of [13, 21] to fields of even characteristic and to arbitrary equation of the curve. These formulae can be evaluated faster than the more general Cantor algorithm and allow to obtain faster arithmetic on a hyperelliptic genus 2 curve than on elliptic curves. We give timings for implementations using various libraries for the fie...
متن کاملNon-hyperelliptic curves of genus three over finite fields of characteristic two
Let k be a finite field of even characteristic. We obtain in this paper a complete classification, up to k-isomorphism, of non singular quartic plane curves defined over k. We find explicit rational normal models and we give closed formulas for the total number of k-isomorphism classes. We deduce from these computations the number of k-rational points of the different strata by the Newton polyg...
متن کاملFast Endomorphism for any Genus 2 Hyperelliptic Curve over a Finite Field of Even Characteristic
In EUROCRYPT 2009, Galbraith, Lin and Scott constructed an efficiently computable endomorphism for a large family of elliptic curves defined over finite fields of large characteristic. They demonstrated that the endomorphism can be used to accelerate scalar multiplication in the elliptic curve cryptosystem based on these curves. In this paper we extend the method to any genus 2 hyperelliptic cu...
متن کاملHyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves (Update)
For most of the time since they were proposed, it was widely believed that hyperelliptic curve cryptosystems (HECC) carry a substantial performance penalty compared to elliptic curve cryptosystems (ECC) and are, thus, not too attractive for practical applications. Only quite recently improvements have been made, mainly restricted to curves of genus 2. The work at hand advances the state-of-thea...
متن کاملOn Genus-change in Algebraic Curves over Nonperfect Fields
I give a new proof, in scheme-theoretic language, of Tate’s old result on genus-change over nonperfect fields in characteristic p > 0. Namely, for normal geometrically integral curves, the difference between arithmetic and geometric genus over the algebraic closure is divisible by (p − 1)/2.
متن کامل